Blog Article

[Infographic] 5 Reasons You Need Machine Learning for Performance Advertising

Matthew Kaplan
, Senior Content Marketing Manager

November 3, 2022

Infographic: Five reasons you need machine learning for performance advertising

To download the infographic as a PDF, check the link below.

If you’re a performance marketer, it can feel like your options for effective advertising are narrowing. 

But here’s the good news: despite privacy regulations, LAT, and ATT, you still have great options. Machine learning (ML) is proving highly effective at taking whatever first-party data you have and using it to identify and target the right audience at scale.

Here are five key reasons why you should leverage ML for in-app performance advertising.

1) Find Your Best Customers

A key benefit of a quality ML engine is that when data scientists provide the ML models with raw information, it will determine which data is relevant, the degree and weighting of that relevance, and a prediction of an outcome.

In the advertising world, the models will learn which data points are relevant (channel, device type, time of day) and how much importance to assign each data point, and use that analysis to predict an outcome, such as whether this user is likely to install an app or take a specific in-app action. 

Moloco’s ML engine uses deep neural networks to handle deeper analysis for the desired outcomes.

2) Make Fast Connections Between Disparate Data

ML can process more bits of data per second than humans, and they can do so at a much faster rate. Plus, they don’t miss important connections because they’re fatigued.

3) Make Unbiased Decisions

In order for ML systems to continue learning, they must be as unbiased as possible. ML systems work best when the model doesn’t make assumptions and certain data isn’t treated more or less favorably.

Some degree of change is natural over time, which is one of the reasons why a really well-trained ML model is critical. Where a human observer or biased system might treat previously unlikely observations as outliers or exceptions to the rule, an unbiased approach to data applies the appropriate weight to new information and continues to learn. 

Unlike other ML approaches, Moloco’s ML engine constantly (hourly) ingests new data and quickly adapts to any changes the new data introduces.

It’s essentially future-proofed. 

4) Get Results in a Cost-Effective Manner

Moloco’s ML includes bid price optimization, which ensures you don’t overpay for inventory or lose valuable impressions because we didn’t bid high enough. Additionally, by enhancing bid-processing infrastructure efficiency models, Moloco keeps the cost of bidding down, which enables deep learning to occur in commercial settings.

5) Optimize for Different KPIs

Different UA teams will invariably have different benchmarks and key performance indicators. Apps that rely on volume to monetize, like hypercasual games, will focus on install volume and cost per install (CPI). In contrast, an app that monetizes through in-app purchases or transactions may care more about return on ad spend (ROAS).

Moloco’s ML models are adept at finding profitable users — people who install an app and take a desired, usually monetized, actions – whether that’s buying in-game currency, funding a crypto wallet, watching ads in-app, or shopping in a marketplace. 

Learn more about ML and performance advertising

Interested in learning more about ML and its role in performance advertising? Be sure to download your complimentary copy of 5 Key Aspects of Machine Learning for Performance Marketers, Moloco’s comprehensible primer on the science behind ML. Not all machine learning engines used by demand side platforms (DSPs) today are the same. Our ML primer highlights Moloco Cloud DSP's unique differences and why they are important. Download your copy of our ML primer today!

Download CTA button for report

Editor’s choice

Beyond generative AI: How operational machine learning is transforming mobile app marketing

Explore how the transition from generative AI to operational machine learning is reshaping mobile app marketing and learn how leveraging this cutting-edge technology can unlock exponential growth and unparalleled success in the digital realm.

Better understand how users are engaging with your video ads with Engaged-View Conversions

Uncover user engagement insights with Engaged-View Conversions. Gain a deeper understanding of how users interact with your video ads beyond clicks and views. With EVC, discover that users who watch skippable videos for more than 10 seconds or complete shorter ads are 4 times more likely to convert. Now available for all Moloco advertisers, EVC provides comprehensive data on views, engaged-views, and clicks to shape your marketing strategies. Enhance decision-making and drive business growth. Visit our Help Center or contact your Moloco representative for details.

Elevate your iOS performance with SKOverlay

Experience the power of SKOverlay, Apple's innovative creative rendering format. With SKOverlay, iOS marketers can display captivating ads accompanied by a convenient overlay. Users can effortlessly install advertised apps in the background, without leaving their current screen. Enjoy improved user experience and higher SKAN conversion rates of up to 30%. Streamline app installations and drive iOS engagement with SKOverlay. Learn more at our Help Center or contact Moloco.

Matthew Kaplan
Senior Content Marketing Manager
More by this author

Subscribe to the Moloco Newsletter

Want to learn more?